Random walk to my blog

my blog for sharing my knowledge,experience and viewpoint

0%

布隆过滤器(Bloom Filter)原理及Golang实现

布隆过滤器简介

布隆过滤器(Bloom Filter)是一个基于hash的概率性的数据结构,它实际上是一个很长的二进制向量,可以检查一个元素可能存在集合中,和一定不存在集合中。它的优点是空间效率高,但是有一定false positive(元素不在集合中,但是布隆过滤器显示在集合中)。

布隆过滤器原理

布隆过滤器就是一个长度为m个bit的bit数组,初始的时候每个bit都是0,另外还有k个hash函数。

bloom_filter_empty

布隆过滤器加入元素

当加入一个元素时,先用k个hash函数得到k个hash值,将k个hash值与bit数组长度取模得到个k个位置,将这k个位置对应的bit置位1。

bloom_filter_bloom

在加入了bloom之后,再加入filter
bloom_filter_filter

布隆过滤器查询元素

在布隆过滤器中查询元素比较简单,同样地,先用k个hash函数得到k个hash值,将k个hash值与bit数组长度取模得到个k个位置,然后检查这k个位置的bit是否是1。如果都是1,布隆过滤器返回这个原始存在。

bloom_filter_bloom

布隆过滤器的false positive

查询元素中,有可能k个hash值对应的位置都已经置一,但这都是其他元素的操作,实际上这个元素并不在布隆过滤器中,这就是false positive。
看下面这个例子,添加完bloom,filter后,检查cat是否在
布隆过滤器中。
bloom_filter_cat

实际上,cat并不在布隆过滤器中。所以说,布隆过滤器返回true,元素不一定在其中;但是返回false,元素一定不在布隆过滤器中。

布隆过滤器的false positive计算

false positive计算,有3个重要的参数。

  1. m表示bit数组的长度
  2. k表示散列函数的个数
  3. n表示插入的元素个数

布隆过滤器中,一个元素插入后,某个bit为0的概率是

1
(11/m)^k

n元素插入后,某个bit为0的概率是

1
(1−1/m)^(nk)

false positive的概率是

1
(1−(11/m)^nk)^k

因为需要的是k个不同的bit被设置成1,概率是大约是

1
(1−e^(−kn/m))^k

这个就是false positive的概率

Golang代码实现

代码实现在我的github仓库
这个Golang实现,支持并发操作,批量加入byte数组,字符串,数字等。

bit数组的大小选择

代码中,bit数组表示成[]byte数组。由于后续在[]byte定位hash需要取余操作,%操作是一个比较慢的操作,如果数组的长度是2的n次方,%可以被优化成& (2^n-1)。因此,New()函数初始化的时候,会将[]byte数组的长度拉长到2^n,加快计算。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
type Filter struct {
lock *sync.RWMutex
concurrent bool

m uint64 // bit array of m bits, m will be ceiling to power of 2
n uint64 // number of inserted elements
log2m uint64 // log_2 of m
k uint64 // the number of hash function
keys []byte // byte array to store hash value
}

func New(size uint64, k uint64, race bool) *Filter {
log2 := uint64(math.Ceil(math.Log2(float64(size))))
filter := &Filter{
m: 1 << log2,
log2m: log2,
k: k,
keys: make([]byte, 1<<log2),
concurrent: race,
}
if filter.concurrent {
filter.lock = &sync.RWMutex{}
}
return filter
}

// location returns the bit position in byte array
// & (f.m - 1) is the quick way for mod operation
func (f *Filter) location(h uint64) (uint64, uint64) {
slot := (h / bitPerByte) & (f.m - 1)
mod := h & mod7
return slot, mod
}

hash函数的选择

因为需要快速的操作,因此不选择md5,sha等耗时比较久的hash操作。经过比较之后,我选择使用murmur3的hash算法,来对key进行hash。

1
2
3
4
5
6
7
8
9
10
11
12
// baseHash returns the murmur3 128-bit hash
func baseHash(data []byte) []uint64 {
a1 := []byte{1} // to grab another bit of data
hasher := murmur3.New128()
hasher.Write(data) // #nosec
v1, v2 := hasher.Sum128()
hasher.Write(a1) // #nosec
v3, v4 := hasher.Sum128()
return []uint64{
v1, v2, v3, v4,
}
}

输入一段元素的字节数组,将其hash值返回,计算出这个元素的位置。

更多内容,访问我的博客